Accelerating Convergence in Global Non-Convex Optimization with Reversible Diffusion

05/19/2023
by   Ryo Fujino, et al.
0

Langevin Dynamics has been extensively employed in global non-convex optimization due to the concentration of its stationary distribution around the global minimum of the potential function at low temperatures. In this paper, we propose to utilize a more comprehensive class of stochastic processes, known as reversible diffusion, and apply the Euler-Maruyama discretization for global non-convex optimization. We design the diffusion coefficient to be larger when distant from the optimum and smaller when near, thus enabling accelerated convergence while regulating discretization error, a strategy inspired by landscape modifications. Our proposed method can also be seen as a time change of Langevin Dynamics, and we prove convergence with respect to KL divergence, investigating the trade-off between convergence speed and discretization error. The efficacy of our proposed method is demonstrated through numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro