Accelerated Primal-Dual Policy Optimization for Safe Reinforcement Learning

02/19/2018
by   Qingkai Liang, et al.
0

Constrained Markov Decision Process (CMDP) is a natural framework for reinforcement learning tasks with safety constraints, where agents learn a policy that maximizes the long-term reward while satisfying the constraints on the long-term cost. A canonical approach for solving CMDPs is the primal-dual method which updates parameters in primal and dual spaces in turn. Existing methods for CMDPs only use on-policy data for dual updates, which results in sample inefficiency and slow convergence. In this paper, we propose a policy search method for CMDPs called Accelerated Primal-Dual Optimization (APDO), which incorporates an off-policy trained dual variable in the dual update procedure while updating the policy in primal space with on-policy likelihood ratio gradient. Experimental results on a simulated robot locomotion task show that APDO achieves better sample efficiency and faster convergence than state-of-the-art approaches for CMDPs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro