Accelerated, physics-inspired inference of skeletal muscle microstructure from diffusion-weighted MRI

06/19/2023
by   Noel Naughton, et al.
0

Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive and in vivo estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI). To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model to provide voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters within their associated confidence intervals, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.

READ FULL TEXT

page 2

page 6

page 7

page 8

research
06/22/2018

Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions

Automated medical image segmentation, specifically using deep learning, ...
research
01/30/2015

Confidence intervals for AB-test

AB-testing is a very popular technique in web companies since it makes i...
research
10/24/2017

Calibrated Projection in MATLAB: Users' Manual

We present the calibrated-projection MATLAB package implementing the met...
research
10/28/2021

Open Problem: Tight Online Confidence Intervals for RKHS Elements

Confidence intervals are a crucial building block in the analysis of var...
research
05/20/2020

Accounting for Input Noise in Gaussian Process Parameter Retrieval

Gaussian processes (GPs) are a class of Kernel methods that have shown t...
research
02/03/2020

Dissecting the statistical properties of the Linear Extrapolation Method of determining protein stability

When protein stability is measured by denaturant induced unfolding the l...
research
09/09/2022

Non-isothermal direct bundle simulation of SMC compression molding with a non-Newtonian compressible matrix

Compression molding of Sheet Molding Compounds (SMC) is a manufacturing ...

Please sign up or login with your details

Forgot password? Click here to reset