Accelerate CU Partition in HEVC using Large-Scale Convolutional Neural Network

09/23/2018
by   Chenying Wang, et al.
0

High efficiency video coding (HEVC) suffers high encoding computational complexity, partly attributed to the rate-distortion optimization quad-tree search in CU partition decision. Therefore, we propose a novel two-stage CU partition decision approach in HEVC intra-mode. In the proposed approach, CNN-based algorithm is designed to decide CU partition mode precisely in three depths. In order to alleviate computational complexity further, an auxiliary earl-termination mechanism is also proposed to filter obvious homogeneous CUs out of the subsequent CNN-based algorithm. Experimental results show that the proposed approach achieves about 37 insignificant BD-Bitrate rise compared with the original HEVC encoder.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro