Abstractions and automated algorithms for mixed domain finite element methods

11/04/2019 ∙ by Cécile Daversin-Catty, et al. ∙ 0

Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension e.g. through a Lagrange multiplier. In this paper, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of co-dimension up to one (i.e. nD-mD with |n-m| <= 1). We introduce high level mathematical software abstractions together with lower level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models and a model for ionic electrodiffusion.



There are no comments yet.


page 21

page 26

page 29

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.