A3CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification

04/09/2022
by   Heng-Chao Li, et al.
8

The problem of effectively exploiting the information multiple data sources has become a relevant but challenging research topic in remote sensing. In this paper, we propose a new approach to exploit the complementarity of two data sources: hyperspectral images (HSIs) and light detection and ranging (LiDAR) data. Specifically, we develop a new dual-channel spatial, spectral and multiscale attention convolutional long short-term memory neural network (called dual-channel A3CLNN) for feature extraction and classification of multisource remote sensing data. Spatial, spectral and multiscale attention mechanisms are first designed for HSI and LiDAR data in order to learn spectral- and spatial-enhanced feature representations, and to represent multiscale information for different classes. In the designed fusion network, a novel composite attention learning mechanism (combined with a three-level fusion strategy) is used to fully integrate the features in these two data sources. Finally, inspired by the idea of transfer learning, a novel stepwise training strategy is designed to yield a final classification result. Our experimental results, conducted on several multisource remote sensing data sets, demonstrate that the newly proposed dual-channel A3CLNN exhibits better feature representation ability (leading to more competitive classification performance) than other state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset