A Yee-like finite-element scheme for Maxwell's equations on unstructured grids
A novel finite element scheme is studied for solving the time-dependent Maxwell's equations on unstructured grids efficiently. Similar to the traditional Yee scheme, the method has one degree of freedom for most edges and a sparse inverse mass matrix. This allows for an efficient realization by explicit time-stepping without solving linear systems. The method is constructed by algebraic reduction of another underlying finite element scheme which involves two degrees of freedom for every edge. Mass-lumping and additional modifications are used in the construction of this method to allow for the mentioned algebraic reduction in the presence of source terms and lossy media later on. A full error analysis of the underlying method is developed which by construction also carries over to the reduced scheme and allows to prove convergence rates for the latter. The efficiency and accuracy of both methods are illustrated by numerical tests. The proposed schemes and their analysis can be extended to structured grids and in special cases the reduced method turns out to be algebraically equivalent to the Yee scheme. The analysis of this paper highlights possible difficulties in extensions of the Yee scheme to non-orthogonal or unstructured grids, discontinuous material parameters, and non-smooth source terms, and also offers potential remedies.
READ FULL TEXT