A well-balanced scheme for Euler equations with singular sources

03/11/2022
by   Changsheng Yu, et al.
0

Numerical methods for the Euler equations with a singular source are discussed in this paper. The stationary discontinuity induced by the singular source and its coupling with the convection of fluid presents challenges to numerical methods. We show that the splitting scheme is not well-balanced and leads to incorrect results; in addition, some popular well-balanced schemes also give incorrect solutions in extreme cases due to the singularity of source. To fix such difficulties, we propose a solution-structure based approximate Riemann solver, in which the structure of Riemann solution is first predicted and then its corresponding approximate solver is given. The proposed solver can be applied to the calculation of numerical fluxes in a general finite volume method, which can lead to a new well-balanced scheme. Numerical tests show that the discontinuous Galerkin method based on the present approximate Riemann solver has the ability to capture each wave accurately.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro