A weakly supervised registration-based framework for prostate segmentation via the combination of statistical shape model and CNN

by   Chunxia Qin, et al.

Precise determination of target is an essential procedure in prostate interventions, such as the prostate biopsy, lesion detection and targeted therapy. However, the prostate delineation may be tough in some cases due to tissue ambiguity or lack of partial anatomical boundary. To address this problem, we proposed a weakly supervised registration-based framework for the precise prostate segmentation, by combining convolutional neural network (CNN) with statistical shape model (SSM). To obtain the prostate region, an inception-based neural network (SSM-Net) was firstly exploited to predict the model transform, shape control parameters and a fine-tuning vector, for the generation of prostate boundary. According to the inferred boundary, a normalized distance map was calculated. Then, a residual U-net (ResU-Net) was employed to predict a probability label map from the input images. Finally, the average of the distance map and the probability map was regarded as the prostate segmentation. After that, two public dataset PROMISE12 and NCI- ISBI 2013 were utilized for the model computation and for the network training and testing. The validation results demonstrate that the segmentation framework using a SSM with 9500 nodes achieved the best performance, with a dice of 0.904 and an average surface distance of 1.88 mm. In addition, we verified the impact of model elasticity augmentation and fine-tuning item on the network segmentation capability. As a result, both factors have improved the delineation accuracy, with dice increased by 10 conclusion, via the combination of two weakly supervised neural networks, our segmentation method might be an effective and robust approach for prostate segmentation.


page 2

page 3

page 5

page 8


Mutual information neural estimation in CNN-based end-to-end medical image registration

Image registration is one of the most underlined processes in medical im...

Localized Perturbations For Weakly-Supervised Segmentation of Glioma Brain Tumours

Deep convolutional neural networks (CNNs) have become an essential tool ...

Deep Complementary Joint Model for Complex Scene Registration and Few-shot Segmentation on Medical Images

Deep learning-based medical image registration and segmentation joint mo...

Deep Learning-based Framework for Automatic Cranial Defect Reconstruction and Implant Modeling

The goal of this work is to propose a robust, fast, and fully automatic ...

Shape-Aware Organ Segmentation by Predicting Signed Distance Maps

In this work, we propose to resolve the issue existing in current deep l...

Discretely-constrained deep network for weakly supervised segmentation

An efficient strategy for weakly-supervised segmentation is to impose co...

A new approach to extracting coronary arteries and detecting stenosis in invasive coronary angiograms

In stable coronary artery disease (CAD), reduction in mortality and/or m...