A Weakly Supervised Learning Approach based on Spectral Graph-Theoretic Grouping
In this study, a spectral graph-theoretic grouping strategy for weakly supervised classification is introduced, where a limited number of labelled samples and a larger set of unlabelled samples are used to construct a larger annotated training set composed of strongly labelled and weakly labelled samples. The inherent relationship between the set of strongly labelled samples and the set of unlabelled samples is established via spectral grouping, with the unlabelled samples subsequently weakly annotated based on the strongly labelled samples within the associated spectral groups. A number of similarity graph models for spectral grouping, including two new similarity graph models introduced in this study, are explored to investigate their performance in the context of weakly supervised classification in handling different types of data. Experimental results using benchmark datasets as well as real EMG datasets demonstrate that the proposed approach to weakly supervised classification can provide noticeable improvements in classification performance, and that the proposed similarity graph models can lead to ultimate learning results that are either better than or on a par with existing similarity graph models in the context of spectral grouping for weakly supervised classification.
READ FULL TEXT