A weak Galerkin method and its two-grid algorithm for the quasi-linear elliptic problems of non-monotone type
In this article, a weak Galerkin method is firstly presented and analyzed for the quasi-linear elliptic problem of non-monotone type. By using Brouwer's fixed point technique, the existence of WG solution and error estimates in both the energy-like norm and the L^2 norm are derived. Then an efficient two-grid WG method is introduced to improve the computational efficiency. The convergence error of the two-grid WG method is analyzed in the energy-like norm. Numerical experiments are presented to verify our theoretical findings.
READ FULL TEXT