A Virtual Element Method for the wave equation on curved edges in two dimensions

06/11/2021 ∙ by Franco Dassi, et al. ∙ 0

In this work we present an extension of the Virtual Element Method with curved edges for the numerical approximation of the second order wave equation in a bidimensional setting. Curved elements are used to describe the domain boundary, as well as internal interfaces corresponding to the change of some mechanical parameters. As opposite to the classic and isoparametric Finite Element approaches, where the geometry of the domain is approximated respectively by piecewise straight lines and by higher order polynomial maps, in the proposed method the geometry is exactly represented, thus ensuring a highly accurate numerical solution. Indeed, if in the former approach the geometrical error might deteriorate the quality of the numerical solution, in the latter approach the curved interfaces/boundaries are approximated exactly guaranteeing the expected order of convergence for the numerical scheme. Theoretical results and numerical findings confirm the validity of the proposed approach.



There are no comments yet.


page 20

page 21

page 22

page 23

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.