A variant of Schur's product theorem and its applications
We show the following version of the Schur's product theorem. If M=(M_j,k)_j,k=1^n∈R^n× n is a positive semidefinite matrix with all entries on the diagonal equal to one, then the matrix N=(N_j,k)_j,k=1^n with the entries N_j,k=M_j,k^2-1/n is positive semidefinite. As a corollary of this result, we prove the conjecture of E. Novak on intractability of numerical integration on a space of trigonometric polynomials of degree at most one in each variable. Finally, we discuss also some consequences for Bochner's theorem, covariance matrices of χ^2-variables, and mean absolute values of trigonometric polynomials.
READ FULL TEXT