A unified treatment of multiple testing with prior knowledge using the p-filter

03/18/2017
by   Aaditya Ramdas, et al.
0

A significant literature studies ways of employing prior knowledge to improve power and precision of multiple testing procedures. Some common forms of prior knowledge may include (a) a priori beliefs about which hypotheses are null, modeled by non-uniform prior weights; (b) differing importances of hypotheses, modeled by differing penalties for false discoveries; (c) multiple arbitrary partitions of the hypotheses into known (possibly overlapping) groups, indicating (dis)similarity of hypotheses; and (d) knowledge of independence, positive or arbitrary dependence between hypotheses or groups, allowing for more aggressive or conservative procedures. We present a unified algorithmic framework called p-filter for global null testing and false discovery rate (FDR) control that allows the scientist to incorporate all four types of prior knowledge (a)-(d) simultaneously, recovering a wide variety of common algorithms as special cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro