A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions

02/28/2023
by   Michael Penwarden, et al.
0

Physics-informed neural networks (PINNs) as a means of solving partial differential equations (PDE) have garnered much attention in Computational Science and Engineering (CS E). However, a recent topic of interest is exploring various training (i.e., optimization) challenges - in particular, arriving at poor local minima in the optimization landscape results in a PINN approximation giving an inferior, and sometimes trivial, solution when solving forward time-dependent PDEs with no data. This problem is also found in, and in some sense more difficult, with domain decomposition strategies such as temporal decomposition using XPINNs. To address this problem, we first enable a general categorization for previous causality methods, from which we identify a gap in the previous approaches. We then furnish examples and explanations for different training challenges, their cause, and how they relate to information propagation and temporal decomposition. We propose a solution to fill this gap by reframing these causality concepts into a generalized information propagation framework in which any prior method or combination of methods can be described. Our unified framework moves toward reducing the number of PINN methods to consider and the implementation and retuning cost for thorough comparisons. We propose a new stacked-decomposition method that bridges the gap between time-marching PINNs and XPINNs. We also introduce significant computational speed-ups by using transfer learning concepts to initialize subnetworks in the domain and loss tolerance-based propagation for the subdomains. We formulate a new time-sweeping collocation point algorithm inspired by the previous PINNs causality literature, which our framework can still describe, and provides a significant computational speed-up via reduced-cost collocation point segmentation. Finally, we provide numerical results on baseline PDE problems.

READ FULL TEXT

page 7

page 8

page 10

page 21

page 22

page 23

page 26

page 28

research
07/05/2022

Rethinking the Importance of Sampling in Physics-informed Neural Networks

Physics-informed neural networks (PINNs) have emerged as a powerful tool...
research
10/26/2021

Physics-Informed Neural Networks (PINNs) for Parameterized PDEs: A Metalearning Approach

Physics-informed neural networks (PINNs) as a means of discretizing part...
research
10/24/2022

A Novel Adaptive Causal Sampling Method for Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) have become a kind of attractiv...
research
05/17/2023

Provably Correct Physics-Informed Neural Networks

Recent work provides promising evidence that Physics-informed neural net...
research
03/03/2022

Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media

Physics-Informed Neural Networks (PINNs) have received increased interes...
research
01/18/2022

Local Lagrangian reduced-order modeling for Rayleigh-Taylor instability by solution manifold decomposition

Rayleigh-Taylor instability is a classical hydrodynamic instability of g...

Please sign up or login with your details

Forgot password? Click here to reset