A Unified Prediction Framework for Signal Maps

by   Emmanouil Alimpertis, et al.

Signal maps are essential for the planning and operation of cellular networks. However, the measurements needed to create such maps are expensive, often biased, not always reflecting the metrics of interest, and posing privacy risks. In this paper, we develop a unified framework for predicting cellular signal maps from limited measurements. Our framework builds on a state-of-the-art random-forest predictor, or any other base predictor. We propose and combine three mechanisms that deal with the fact that not all measurements are equally important for a particular prediction task. First, we design quality-of-service functions (Q), including signal strength (RSRP) but also other metrics of interest to operators, i.e., coverage and call drop probability. By implicitly altering the loss function employed in learning, quality functions can also improve prediction for RSRP itself where it matters (e.g., MSE reduction up to 27 are critical). Second, we introduce weight functions (W) to specify the relative importance of prediction at different locations and other parts of the feature space. We propose re-weighting based on importance sampling to obtain unbiased estimators when the sampling and target distributions are different. This yields improvements up to 20 or losses based on user population density. Third, we apply the Data Shapley framework for the first time in this context: to assign values (ϕ) to individual measurement points, which capture the importance of their contribution to the prediction task. This improves prediction (e.g., from 64 to 94 and can also enable data minimization. We evaluate our methods and demonstrate significant improvement in prediction performance, using several real-world datasets.


page 5

page 7

page 10

page 17

page 19

page 21

page 22

page 24


Privacy-Utility Trades in Crowdsourced Signal Map Obfuscation

Cellular providers and data aggregating companies crowdsource celluar si...

Single Sample Feature Importance: An Interpretable Algorithm for Low-Level Feature Analysis

Have you ever wondered how your feature space is impacting the predictio...

A Unified Framework for Random Forest Prediction Error Estimation

We introduce a unified framework for random forest prediction error esti...

A Feature Importance Analysis for Soft-Sensing-Based Predictions in a Chemical Sulphonation Process

In this paper we present the results of a feature importance analysis of...

Parameterization-Independent Importance Sampling of Environment Maps

Environment maps with high dynamic range lighting, such as daylight sky ...

Kernel-Based Adaptive Online Reconstruction of Coverage Maps With Side Information

In this paper, we address the problem of reconstructing coverage maps fr...

Please sign up or login with your details

Forgot password? Click here to reset