A Unified NMPC Scheme for MAVs Navigation with 3D Collision Avoidance under Position Uncertainty

by   Sina Sharif Mansouri, et al.

This article proposes a novel Nonlinear Model Predictive Control (NMPC) framework for Micro Aerial Vehicle (MAV) autonomous navigation in constrained environments. The introduced framework allows us to consider the nonlinear dynamics of MAVs and guarantees real-time performance. Our first contribution is to design a computationally efficient subspace clustering method to reveal from geometrical constraints to underlying constraint planes within a 3D point cloud, obtained from a 3D lidar scanner. The second contribution of our work is to incorporate the extracted information into the nonlinear constraints of NMPC for avoiding collisions. Our third contribution focuses on making the controller robust by considering the uncertainty of localization and NMPC using the Shannon entropy. This step enables us to track either the position or velocity references, or none of them if necessary. As a result, the collision avoidance constraints are defined in the local coordinates of MAVs and it remains active and guarantees collision avoidance, despite localization uncertainties, e.g., position estimation drifts. Additionally, as the platform continues the mission, this will result in less uncertain position estimations, due to the feature extraction and loop closure. The efficacy of the suggested framework has been evaluated using various simulations in the Gazebo environment.


page 1

page 7


Subterranean MAV Navigation based on Nonlinear MPC with Collision Avoidance Constraints

Micro Aerial Vehicles (MAVs) navigation in subterranean environments is ...

Nonlinear Model Predictive Control with Obstacle Avoidance Constraints for Autonomous Navigation in a Canal Environment

In this paper, we describe the development process of autonomous navigat...

SwarmCCO: Probabilistic Reactive Collision Avoidance for Quadrotor Swarms under Uncertainty

We present decentralized collision avoidance algorithms for quadrotor sw...

Air Bumper: A Collision Detection and Reaction Framework for Autonomous MAV Navigation

Autonomous navigation in unknown environments with obstacles remains cha...

Real-time Identification and Simultaneous Avoidance of Static and Dynamic Obstacles on Point Cloud for UAVs Navigation

Avoiding hybrid obstacles in unknown scenarios with an efficient flight ...

Probabilistic Constraint Tightening Techniques for Trajectory Planning with Predictive Control

In order for automated mobile vehicles to navigate in the real world wit...

Deployable, Data-Driven Unmanned Vehicle Navigation System in GPS-Denied, Feature-Deficient Environments

This paper presents a novel data-driven navigation system to navigate an...

Please sign up or login with your details

Forgot password? Click here to reset