A Unified Batch Selection Policy for Active Metric Learning

02/15/2021
by   Priyadarshini Kumari, et al.
6

Active metric learning is the problem of incrementally selecting high-utility batches of training data (typically, ordered triplets) to annotate, in order to progressively improve a learned model of a metric over some input domain as rapidly as possible. Standard approaches, which independently assess the informativeness of each triplet in a batch, are susceptible to highly correlated batches with many redundant triplets and hence low overall utility. While a recent work <cit.> proposes batch-decorrelation strategies for metric learning, they rely on ad hoc heuristics to estimate the correlation between two triplets at a time. We present a novel batch active metric learning method that leverages the Maximum Entropy Principle to learn the least biased estimate of triplet distribution for a given set of prior constraints. To avoid redundancy between triplets, our method collectively selects batches with maximum joint entropy, which simultaneously captures both informativeness and diversity. We take advantage of the submodularity of the joint entropy function to construct a tractable solution using an efficient greedy algorithm based on Gram-Schmidt orthogonalization that is provably ( 1 - 1/e)-optimal. Our approach is the first batch active metric learning method to define a unified score that balances informativeness and diversity for an entire batch of triplets. Experiments with several real-world datasets demonstrate that our algorithm is robust, generalizes well to different applications and input modalities, and consistently outperforms the state-of-the-art.

READ FULL TEXT

page 11

page 12

page 13

research
05/20/2020

Batch Decorrelation for Active Metric Learning

We present an active learning strategy for training parametric models of...
research
09/16/2019

Visualizing How Embeddings Generalize

Deep metric learning is often used to learn an embedding function that c...
research
04/26/2019

Robust Metric Learning based on the Rescaled Hinge Loss

Distance/Similarity learning is a fundamental problem in machine learnin...
research
09/09/2020

Diversified Mutual Learning for Deep Metric Learning

Mutual learning is an ensemble training strategy to improve generalizati...
research
03/26/2018

Metric Learning with Dynamically Generated Pairwise Constraints for Ear Recognition

Ear recognition task is known as predicting whether two ear images belon...
research
07/26/2022

Active Learning of Ordinal Embeddings: A User Study on Football Data

Humans innately measure distance between instances in an unlabeled datas...
research
11/08/2021

Query-augmented Active Metric Learning

In this paper we propose an active metric learning method for clustering...

Please sign up or login with your details

Forgot password? Click here to reset