A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic
This paper analyzes a two-timescale stochastic algorithm for a class of bilevel optimization problems with applications such as policy optimization in reinforcement learning, hyperparameter optimization, among others. We consider a case when the inner problem is unconstrained and strongly convex, and the outer problem is either strongly convex, convex or weakly convex. We propose a nonlinear two-timescale stochastic approximation (TTSA) algorithm for tackling the bilevel optimization. In the algorithm, a stochastic (semi)gradient update with a larger step size (faster timescale) is used for the inner problem, while a stochastic mirror descent update with a smaller step size (slower timescale) is used for the outer problem. When the outer problem is strongly convex (resp. weakly convex), the TTSA algorithm finds an 𝒪(K^-1/2)-optimal (resp. 𝒪(K^-2/5)-stationary) solution, where K is the iteration number. To our best knowledge, these are the first convergence rate results for using nonlinear TTSA algorithms on the concerned class of bilevel optimization problems. Lastly, specific to the application of policy optimization, we show that a two-timescale actor-critic proximal policy optimization algorithm can be viewed as a special case of our framework. The actor-critic algorithm converges at 𝒪(K^-1/4) in terms of the gap in objective value to a globally optimal policy.
READ FULL TEXT