A Two-Pass Lower Bound for Semi-Streaming Maximum Matching

by   Sepehr Assadi, et al.

We prove a lower bound on the space complexity of two-pass semi-streaming algorithms that approximate the maximum matching problem. The lower bound is parameterized by the density of Ruzsa-Szemeredi graphs: * Any two-pass semi-streaming algorithm for maximum matching has approximation ratio at least (1- Ω(logRS(n)/logn)), where RS(n) denotes the maximum number of induced matchings of size Θ(n) in any n-vertex graph, i.e., the largest density of a Ruzsa-Szemeredi graph. Currently, it is known that n^Ω(1/loglogn)≤ RS(n) ≤n/2^O(log^*(n)) and closing this (large) gap between upper and lower bounds has remained a notoriously difficult problem in combinatorics. Under the plausible hypothesis that RS(n) = n^Ω(1), our lower bound is the first to rule out small-constant approximation two-pass semi-streaming algorithms for the maximum matching problem, making progress on a longstanding open question in the graph streaming literature.



There are no comments yet.


page 1

page 2

page 3

page 4


Constructing Large Matchings via Query Access to a Maximal Matching Oracle

Multi-pass streaming algorithm for Maximum Matching have been studied si...

Deterministic (1+ε)-Approximate Maximum Matching with 𝗉𝗈𝗅𝗒(1/ε) Passes in the Semi-Streaming Model

We present a deterministic (1+ε)-approximate maximum matching algorithm ...

An Asymptotically Optimal Algorithm for Maximum Matching in Dynamic Streams

We present an algorithm for the maximum matching problem in dynamic (ins...

Beating Two-Thirds For Random-Order Streaming Matching

We study the maximum matching problem in the random-order semi-streaming...

An Optimal Algorithm for Triangle Counting

We present a new algorithm for approximating the number of triangles in ...

Optimal Streaming Algorithms for Graph Matching

We present parameterized streaming algorithms for the graph matching pro...

On the Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm for Metric TSP

The k-Opt and Lin-Kernighan algorithm are two of the most important loca...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.