A Topic Coverage Approach to Evaluation of Topic Models
When topic models are used for discovery of topics in text collections, a question that arises naturally is how well the model-induced topics correspond to topics of interest to the analyst. We investigate an approach to topic model evaluation based on measuring topic coverage, and propose measures of coverage based on matching between model topics and reference topics. We demonstrate the benefits of the approach by evaluating, in a series of experiments, different types of topic models on two distinct text domains. The experiments include evaluation of model quality, analysis of coverage of distinct topic categories, and the relation between coverage and other topic model evaluation methods. The contributions of the paper include the measures of coverage and the recommendations for the use of topic models for topic discovery.
READ FULL TEXT