A Timing Yield Model for SRAM Cells in Sub/Near-threshold Voltages Based on A Compact Drain Current Model

02/24/2022
by   Shan Shen, et al.
0

Sub/Near-threshold static random-access memory (SRAM) design is crucial for addressing the memory bottleneck in energy-constrained applications. However, the high integration density and reliability under process variations demand an accurate estimation of extremely small failure probabilities. To capture such a rare event in memory circuits, the time and storage overhead of conventional Monte Carlo (MC) simulations cannot be tolerated. On the other hand, classic analytical methods predicting failure probabilities from a physical expression become inaccurate in the sub/near-threshold region due to the assumed distribution or the oversimplified drain current model for nanoscale devices. This work first proposes a simple but efficient drain current model to describe the drain-induced barrier lowering effect at low voltages. Based on that, the probability density functions of the interest metrics in SRAM are derived. Two analytical models are then put forward to evaluate SRAM dynamic stabilities including access and write-time failures. The proposed models can be extended easily to different types of SRAM with different read/write assist circuits. The models are validated against MC simulations across different operating voltages and temperatures. The average relative errors at 0.5V VDD are only 8.8 size of required data samples is 43.6X smaller than that of the state-of-the-art method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset