A Theory of Second-Order Wireless Network Optimization and Its Application on AoI

01/17/2022
by   Daojing Guo, et al.
0

This paper introduces a new theoretical framework for optimizing second-order behaviors of wireless networks. Unlike existing techniques for network utility maximization, which only considers first-order statistics, this framework models every random process by its mean and temporal variance. The inclusion of temporal variance makes this framework well-suited for modeling stateful fading wireless channels and emerging network performance metrics such as age-of-information (AoI). Using this framework, we sharply characterize the second-order capacity region of wireless access networks. We also propose a simple scheduling policy and prove that it can achieve every interior point in the second-order capacity region. To demonstrate the utility of this framework, we apply it for an important open problem: the optimization of AoI over Gilbert-Elliott channels. We show that this framework provides a very accurate characterization of AoI. Moreover, it leads to a tractable scheduling policy that outperforms other existing work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset