A Theory of Multiple-Source Adaptation with Limited Target Labeled Data

07/19/2020
by   Yishay Mansour, et al.
0

We study multiple-source domain adaptation, when the learner has access to abundant labeled data from multiple-source domains and limited labeled data from the target domain. We analyze existing algorithms for this problem, and propose a novel algorithm based on model selection. Our algorithms are efficient, and experiments on real data-sets empirically demonstrate their benefits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset