A Systematic Review of Productivity Factors in Software Development

Analysing and improving productivity has been one of the main goals of software engineering research since its beginnings. A plethora of studies has been conducted on various factors that resulted in several models for analysis and prediction of productivity. However, productivity is still an issue in current software development and not all factors and their relationships are known. This paper reviews the large body of available literature in order to distill a list of the main factors influencing productivity investigated so far. The measure for importance here is the number of articles a factor is mentioned in. Special consideration is given to soft or human-related factors in software engineering that are often not analysed with equal detail as more technical factors. The resulting list can be used to guide further analysis and as basis for building productivity models.



page 1

page 2

page 3

page 4


Towards Methods for Model-Based Software Development

Software engineering is a young discipline. Despite efforts in recent ye...

Time Pressure in Software Engineering: A Systematic Literature Review

Large project overruns and overtime work have been reported in the softw...

Optimal optical conditions for Microalgal production in photobioreactors

The potential of industrial applications for microalgae has motivated th...

Mind the Gap: On the Relationship Between Automatically Measured and Self-Reported Productivity

To improve software developers' productivity has been the holy grail of ...

Regularized Fuzzy Neural Networks to Aid Effort Forecasting in the Construction and Software Development

Predicting the time to build software is a very complex task for softwar...

Methodological Issues in Observational Studies

Background. Starting from the 1960s, practitioners and researchers have ...

Admiring the Great Mountain: A Celebration Special Issue in Honor of Stephen Grossbergs 80th Birthday

This editorial summarizes selected key contributions of Prof. Stephen Gr...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.


  • [1] A. J. Albrecht. Measuring application development productivity. In Proc. Joint SHARE/GUIDE/IBM Application Development Symposium, pages 83–92, 1979.
  • [2] R. Berntsson-Svensson and A. Aurum. Successful software project and products: An empirical investigation. In Proc. ISESE ’06, pages 144–153. ACM Press, 2006.
  • [3] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove. Improving speed and productivity of software development: A global survey of software developers. IEEE Trans. Softw. Eng., 22(12), 1996.
  • [4] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R. Madachy, D. Reifer, and B. Steece. Software Cost Estimation with COCOMO II. Prentice-Hall, 2000.
  • [5] B. W. Boehm and P. N. Papaccio. Understanding and controlling software costs. IEEE Trans. Softw. Eng., 14(10):1462–1477, 1988.
  • [6] F. C. Brodbeck. Intensive Kommunikation lohnt sich für SE-Projekte. In Brodbeck and Frese [8], pages 51–67.
  • [7] F. C. Brodbeck. Software-Entwicklung: Ein Tätigkeitsspektrum mit vielfältigen Kommunikations- und Lernanforderungen. In Brodbeck and Frese [8], pages 13–34.
  • [8] F. C. Brodbeck and M. Frese, editors. Produktivität und Qualität in Software-Projekten. R. Oldenbourg Verlag, 1994.
  • [9] W. D. Brooks. Software technology payoff: Some statistical evidence. J. Syst. Software, 2(1):3–9, 1981.
  • [10] P. D. Chatzoglou and L. A. Macaulay. The importance of human factors in planning the requirements capture stage of a project. Int. J. Proj. Manag., 15(1):39–53, 1997.
  • [11] T. DeMarco and T. Lister. Peopleware. Productive Projects and Teams. Dorset House Publishing, 1987.
  • [12] M. Frese and F. C. Brodbeck. Einleitung. In Brodbeck and Frese [8], pages 7–10.
  • [13] R. L. Glass. Software runaways–some surprising findings. J. Sys. Software, 41(2):75–77, 1998.
  • [14] L. Hatton. The chimera of software quality. Computer, 40(8):102–104, 2007.
  • [15] E. J. Hill, B. C. Miller, S. P. Weiner, and J. Colihan. Influences of the virtual office on aspects of work and work/life balance. Person. Psychol., 51:667–683, 1998.
  • [16] D. R. Jeffery and M. J. Lawrence. Some issues in the measurement and control of programming productivity. Inform. Manag., 4(4):169–176, 1981.
  • [17] C. Jones. Programming Productivity: Steps Toward a Science. McGraw-Hill, 1986.
  • [18] C. Jones. Software Assessments, Benchmarks, and Best Practices. Addison-Wesley, 2000.
  • [19] B. Kitchenham and E. Mendes. Software productivity measurement using multiple size measures. IEEE Trans. Softw. Eng., 30(12):1023–1035, 2004.
  • [20] B. Lakhanpal. Understanding the factors influencing the performance of software development groups: An exploratory group-level analysis. Inform. Software Tech., 35(8):468–473, 1993.
  • [21] K. Maxwell, L. Van Wassenhove, and S. Dutta. Software development productivity of european space, military and industrial applications. IEEE Trans. Softw. Eng., 22(10):706–718, 1996.
  • [22] K. D. Maxwell and P. Forselius. Benchmarking software development productivity. IEEE Softw., 17(1):80–88, 2000.
  • [23] P. Mohagheghi and R. Conradi. Quality, productivity and economic benefits of software reuse: a review of industrial studies. Empir. Software Eng., 12(5):471–516, 2007.
  • [24] D. Port and M. McArthur. A study of productivity and efficiency for object-oriented methods and languages. In Proc. APSEC ’99. IEEE CS, 1999.
  • [25] Y. W. Ramírez and D. A. Nembhard. Measuring knowledge worker productivity: A taxonomy. J. Intel. Cap., 5(4):602–628, 2004.
  • [26] R. H. Rasch. An investigation of factors that impact behavioral outcomes of software engineers. In Proc. SIGCPR. ACM Press, 1991.
  • [27] M. Ruhe and S. Wagner. Using the ProdFLOW approach to address the myth of productivity in R&D organizations. In Proc. ESEM ’08. ACM Press, 2008.
  • [28] K. Spiegl. Projektmanagement Life – Best Practices und Significant Events im Software-Projektmanagement. Masterarbeit, Universität Wien, 2007.
  • [29] S. Wagner and M. Ruhe. A structured review of productivity factors in software development. Technical Report TUM-I0832, TU München, 2008.
  • [30] C. E. Walston and C. P. Felix. A method of programming measurement and estimation. IBM Sys. J., 16(1):54–73, 1977.
  • [31] C. Wohlin and M. Ahlgren. Soft factors and their impact on time to market. Software Qual. J., 4(3):189–205, 1995.