A Survey on 3D Skeleton-Based Action Recognition Using Learning Method

02/14/2020
by   Bin Ren, et al.
0

3D skeleton-based action recognition, owing to the latent advantages of skeleton, has been an active topic in computer vision. As a consequence, there are lots of impressive works including conventional handcraft feature based and learned feature based have been done over the years. However, previous surveys about action recognition mostly focus on the video or RGB data dominated methods, and the scanty existing reviews related to skeleton data mainly indicate the representation of skeleton data or performance of some classic techniques on a certain dataset. Besides, though deep learning methods has been applied to this field for years, there is no related reserach concern about an introduction or review from the perspective of deep learning architectures. To break those limitations, this survey firstly highlight the necessity of action recognition and the significance of 3D-skeleton data. Then a comprehensive introduction about Recurrent Neural Network(RNN)-based, Convolutional Neural Network(CNN)-based and Graph Convolutional Network(GCN)-based main stream action recognition techniques are illustrated in a data-driven manner. Finally, we give a brief talk about the biggest 3D skeleton dataset NTU-RGB+D and its new edition called NTU-RGB+D 120, accompanied with several existing top rank algorithms within those two datasets. To our best knowledge, this is the first research which give an overall discussion over deep learning-based action recognitin using 3D skeleton data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset