A survey of urban drive-by sensing: An optimization perspective

01/09/2023
by   Wen Ji, et al.
0

Pervasive and mobile sensing is an integral part of smart transport and smart city applications. Vehicle-based mobile sensing, or drive-by sensing (DS), is gaining popularity in both academic research and field practice. The DS paradigm has an inherent transport component, as the spatial-temporal distribution of the sensors are closely related to the mobility patterns of their hosts, which may include third-party (e.g. taxis, buses) or for-hire (e.g. unmanned aerial vehicles and dedicated vehicles) vehicles. It is therefore essential to understand, assess and optimize the sensing power of vehicle fleets under a wide range of urban sensing scenarios. To this end, this paper offers an optimization-oriented summary of recent literature by presenting a four-step discussion, namely (1) quantifying the sensing quality (objective); (2) assessing the sensing power of various fleets (strategic); (3) sensor deployment (strategic/tactical); and (4) vehicle maneuvers (tactical/operational). By compiling research findings and practical insights in this way, this review article not only highlights the optimization aspect of drive-by sensing, but also serves as a practical guide for configuring and deploying vehicle-based urban sensing systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro