A Survey of Machine Learning Applied to Computer Architecture Design

09/26/2019
by   Drew D. Penney, et al.
0

Machine learning has enabled significant benefits in diverse fields, but, with a few exceptions, has had limited impact on computer architecture. Recent work, however, has explored broader applicability for design, optimization, and simulation. Notably, machine learning based strategies often surpass prior state-of-the-art analytical, heuristic, and human-expert approaches. This paper reviews machine learning applied system-wide to simulation and run-time optimization, and in many individual components, including memory systems, branch predictors, networks-on-chip, and GPUs. The paper further analyzes current practice to highlight useful design strategies and identify areas for future work, based on optimized implementation strategies, opportune extensions to existing work, and ambitious long term possibilities. Taken together, these strategies and techniques present a promising future for increasingly automated architectural design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset