A Survey of Local Differential Privacy and Its Variants

09/02/2023
by   Likun Qin, et al.
0

The introduction and advancements in Local Differential Privacy (LDP) variants have become a cornerstone in addressing the privacy concerns associated with the vast data produced by smart devices, which forms the foundation for data-driven decision-making in crowdsensing. While harnessing the power of these immense data sets can offer valuable insights, it simultaneously poses significant privacy risks for the users involved. LDP, a distinguished privacy model with a decentralized architecture, stands out for its capability to offer robust privacy assurances for individual users during data collection and analysis. The essence of LDP is its method of locally perturbing each user's data on the client-side before transmission to the server-side, safeguarding against potential privacy breaches at both ends. This article offers an in-depth exploration of LDP, emphasizing its models, its myriad variants, and the foundational structure of LDP algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset