A Subspace Projection Approach to Autoencoder-based Anomaly Detection

02/15/2023
by   Jinho Choi, et al.
0

Autoencoder (AE) is a neural network (NN) architecture that is trained to reconstruct an input at its output. By measuring the reconstruction errors of new input samples, AE can detect anomalous samples deviated from the trained data distribution. The key to success is to achieve high-fidelity reconstruction (HFR) while restricting AE's capability of generalization beyond training data, which should be balanced commonly via iterative re-training. Alternatively, we propose a novel framework of AE-based anomaly detection, coined HFR-AE, by projecting new inputs into a subspace wherein the trained AE achieves HFR, thereby increasing the gap between normal and anomalous sample reconstruction errors. Simulation results corroborate that HFR-AE improves the area under receiver operating characteristic curve (AUROC) under different AE architectures and settings by up to 13.4 detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset