A Study of Single and Multi-device Synchronization Methods in Nvidia GPUs

04/11/2020
by   Lingqi Zhang, et al.
0

GPUs are playing an increasingly important role in general-purpose computing. Many algorithms require synchronizations at different levels of granularity in a single GPU. Additionally, the emergence of dense GPU nodes also calls for multi-GPU synchronization. Nvidia's latest CUDA provides a variety of synchronization methods. Until now, there is no full understanding of the characteristics of those synchronization methods. This work explores important undocumented features and provides an in-depth analysis of the performance considerations and pitfalls of the state-of-art synchronization methods for Nvidia GPUs. The provided analysis would be useful when making design choices for applications, libraries, and frameworks running on single and/or multi-GPU environments. We provide a case study of the commonly used reduction operator to illustrate how the knowledge gained in our analysis can be useful. We also describe our micro-benchmarks and measurement methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro