A structure-preserving parametric finite element method for surface diffusion
We propose a structure-preserving parametric finite element method (SP-PFEM) for discretizing the surface diffusion of a closed curve in two dimensions (2D) or surface in three dimensions (3D). Here the "structure-preserving" refers to preserving the two fundamental geometric structures of the surface diffusion flow: (i) the conservation of the area/volume enclosed by the closed curve/surface, and (ii) the decrease of the perimeter/total surface area of the curve/surface. For simplicity of notations, we begin with the surface diffusion of a closed curve in 2D and present a weak (variational) formulation of the governing equation. Then we discretize the variational formulation by using the backward Euler method in time and piecewise linear parametric finite elements in space, with a proper approximation of the unit normal vector by using the information of the curves at the current and next time step. The constructed numerical method is shown to preserve the two geometric structures and also enjoys the good property of asymptotic equal mesh distribution. The proposed SP-PFEM is "weakly" implicit (or almost semi-implicit) and the nonlinear system at each time step can be solved very efficiently and accurately by the Newton's iterative method. The SP-PFEM is then extended to discretize the surface diffusion of a closed surface in 3D. Extensive numerical results, including convergence tests, structure-preserving property and asymptotic equal mesh distribution, are reported to demonstrate the accuracy and efficiency of the proposed SP-PFEM for simulating surface diffusion in 2D and 3D.
READ FULL TEXT