A Strongly Polynomial-Time Algorithm for Weighted General Factors with Three Feasible Degrees

01/27/2023
by   Shuai Shao, et al.
0

General factors are a generalization of matchings. Given a graph G with a set π(v) of feasible degrees, called a degree constraint, for each vertex v of G, the general factor problem is to find a (spanning) subgraph F of G such that deg_F(x) ∈π(v) for every v of G. When all degree constraints are symmetric Δ-matroids, the problem is solvable in polynomial time. The weighted general factor problem is to find a general factor of the maximum total weight in an edge-weighted graph. Strongly polynomial-time algorithms are only known for weighted general factor problems that are reducible to the weighted matching problem by gadget constructions. In this paper, we present the first strongly polynomial-time algorithm for a type of weighted general factor problems with real-valued edge weights that is provably not reducible to the weighted matching problem by gadget constructions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset