A Stochastic Geometry Approach to Doppler Characterization in a LEO Satellite Network

05/07/2020
by   Talha Ahmed Khan, et al.
0

A Non-terrestrial Network (NTN) comprising Low Earth Orbit (LEO) satellites can enable connectivity to underserved areas, thus complementing existing telecom networks. The high-speed satellite motion poses several challenges at the physical layer such as large Doppler frequency shifts. In this paper, an analytical framework is developed for statistical characterization of Doppler shift in an NTN where LEO satellites provide communication services to terrestrial users. Using tools from stochastic geometry, the users within a cell are grouped into disjoint clusters to limit the differential Doppler across users. Under some simplifying assumptions, the cumulative distribution function (CDF) and the probability density function are derived for the Doppler shift magnitude at a random user within a cluster. The CDFs are also provided for the minimum and the maximum Doppler shift magnitude within a cluster. Leveraging the analytical results, the interplay between key system parameters such as the cluster size and satellite altitude is examined. Numerical results validate the insights obtained from the analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset