A Statistical Theory of Deep Learning via Proximal Splitting

09/20/2015
by   Nicholas G. Polson, et al.
0

In this paper we develop a statistical theory and an implementation of deep learning models. We show that an elegant variable splitting scheme for the alternating direction method of multipliers optimises a deep learning objective. We allow for non-smooth non-convex regularisation penalties to induce sparsity in parameter weights. We provide a link between traditional shallow layer statistical models such as principal component and sliced inverse regression and deep layer models. We also define the degrees of freedom of a deep learning predictor and a predictive MSE criteria to perform model selection for comparing architecture designs. We focus on deep multiclass logistic learning although our methods apply more generally. Our results suggest an interesting and previously under-exploited relationship between deep learning and proximal splitting techniques. To illustrate our methodology, we provide a multi-class logit classification analysis of Fisher's Iris data where we illustrate the convergence of our algorithm. Finally, we conclude with directions for future research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset