A staggered pressure correction numerical scheme to compute a travelling reactive interface in a partially premixed mixture

10/15/2020
by   D Grapsas, et al.
0

We address in this paper a model for the simulation of turbulent deflagrations in industrial applications. The flow is governed by the Euler equations for a variable composition mixture and the combustion modelling is based on a phenomenological approach: the flame propagation is represented by the transport of the characteristic function of the burnt zone, where the chemical reaction is complete; outside this zone, the atmosphere remains in its fresh state. Numerically, we approximate this problem by a penalization-like approach, i.e. using a finite conversion rate with a characteristic time tending to zero with the space and time steps. The numerical scheme works on staggered, possibly unstructured, meshes. The time-marching algorithm is of segregated type, and consists in solving in a first step the chemical species mass balances and then, in a second step, mass, momentum and energy balances. For this latter stage of the algorithm, we use a pressure correction technique, and solve a balance equation for the so-called sensible enthalpy instead of the total energy balance, with corrective terms for consistency. The scheme is shown to satisfy the same stability properties as the continuous problem: the chemical species mass fractions are kept in the [0, 1] interval, the density and the sensible internal energy stay positive and the integral over the computational domain of a discrete total energy is conserved. In addition, we show that the scheme is in fact conservative, i.e. that its solution satisfy a conservative discrete total energy balance equation, with space and time discretizations which are unusual but consistent in the Lax-Wendroff sense. Finally, we observe numerically that the penalization procedure converges, i.e. that making the chemical time scale tend to zero allows to converge to the solution of the target (infinitely fast chemistry) continuous problem. Tests also evidence that the scheme accuracy dramatically depends on the discretization of the convection operator in the chemical species mass balances. October 14, 2020.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
06/26/2019

Consistent Internal Energy Based Schemes for the Compressible Euler Equations

Numerical schemes for the solution of the Euler equations have recently ...
research
10/16/2020

Modelling of a spherical deflagration at constant speed

We build in this paper a numerical solution procedure to compute the flo...
research
09/14/2022

A staggered scheme for the compressible Euler equations on general 3D meshes

We address here the discretization of the momentum convection operator f...
research
01/05/2023

A MUSCL-like finite volumes approximation of the momentum convection operator for low-order nonconforming face-centred discretizations

We propose in this paper a discretization of the momentum convection ope...
research
10/09/2019

Conservativity And Weak Consistency Of A Class Of Staggered Finite Volume Methods For The Euler Equations

We address a class of schemes for the Euler equations with the following...
research
11/25/2022

An Ensemble-Based Deep Framework for Estimating Thermo-Chemical State Variables from Flamelet Generated Manifolds

Complete computation of turbulent combustion flow involves two separate ...
research
11/10/2022

Bound-preserving discontinuous Galerkin methods with modified Patankar time integrations for chemical reacting flows

In this paper, we develop bound-preserving discontinuous Galerkin (DG) m...

Please sign up or login with your details

Forgot password? Click here to reset