A Speaker-aware Parallel Hierarchical Attentive Encoder-Decoder Model for Multi-turn Dialogue Generation

10/13/2021
by   Zihao Wang, et al.
0

This paper presents a novel open-domain dialogue generation model emphasizing the differentiation of speakers in multi-turn conversations. Differing from prior work that solely relies on the content of conversation history to generate a response, we argue that capturing relative social relations among utterances (i.e., generated by either the same speaker or different persons) benefits the machine capturing fine-grained context information from a conversation history to improve context coherence in the generated response. Given that, we propose a speaker-aware Parallel Hierarchical Attentive Encoder-Decoder (PHAED) model that aims to model each utterance with the awareness of its speaker and contextual associations with the same speaker's previous messages. Specifically, in a conversation involving two speakers, we regard the utterances from one speaker as responses and those from the other as queries. After understanding queries via our encoder with inner-query and inter-query encodings, our decoder reuses the hidden states of previously generated responses, instead of reconstructing these by the encoder, to generate a new response. Our empirical results show that PHAED outperforms the state-of-the-art in both automatic and human evaluations. Furthermore, our ablation study shows that dialogue models with speaker tokens can generally decrease the possibility of generating non-coherent responses regarding the conversation context.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro