A Sound and Complete Algorithm for Learning Causal Models from Relational Data

09/26/2013 ∙ by Marc Maier, et al. ∙ 0

The PC algorithm learns maximally oriented causal Bayesian networks. However, there is no equivalent complete algorithm for learning the structure of relational models, a more expressive generalization of Bayesian networks. Recent developments in the theory and representation of relational models support lifted reasoning about conditional independence. This enables a powerful constraint for orienting bivariate dependencies and forms the basis of a new algorithm for learning structure. We present the relational causal discovery (RCD) algorithm that learns causal relational models. We prove that RCD is sound and complete, and we present empirical results that demonstrate effectiveness.



There are no comments yet.


page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.