A smoothing analysis for multigrid methods applied to tempered fractional problems

10/10/2022
by   D. Ahmad, et al.
0

We consider the numerical solution of time-dependent space tempered fractional diffusion equations. The use of Crank-Nicolson in time and of second-order accurate tempered weighted and shifted Grünwald difference in space leads to dense (multilevel) Toeplitz-like linear systems. By exploiting the related structure, we design an ad-hoc multigrid solver and multigrid-based preconditioners, all with weighted Jacobi as smoother. A new smoothing analysis is provided, which refines state-of-the-art results expanding the set of the suitable Jacobi weights. Furthermore, we prove that if a multigrid method is effective in the non-tempered case, then the same multigrid method is effective also in the tempered one. The numerical results confirm the theoretical analysis, showing that the resulting multigrid-based solvers are computationally effective for tempered fractional diffusion equations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro