A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings

11/03/2017
by   Anna R. Karlin, et al.
0

Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n), the maximum number of stable matchings that a stable matching instance with n men and n women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n) as n→∞, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28^n, and the best upper bound was 2^n n- O(n). In this paper, we show that for all n, f(n) ≤ c^n for some universal constant c. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call "mixing". The latter might be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset