A Simple Geometric Method for Cross-Lingual Linguistic Transformations with Pre-trained Autoencoders

04/08/2021 ∙ by Maarten De Raedt, et al. ∙ 29

Powerful sentence encoders trained for multiple languages are on the rise. These systems are capable of embedding a wide range of linguistic properties into vector representations. While explicit probing tasks can be used to verify the presence of specific linguistic properties, it is unclear whether the vector representations can be manipulated to indirectly steer such properties. We investigate the use of a geometric mapping in embedding space to transform linguistic properties, without any tuning of the pre-trained sentence encoder or decoder. We validate our approach on three linguistic properties using a pre-trained multilingual autoencoder and analyze the results in both monolingual and cross-lingual settings.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.