A Simple Approach to Case-Based Reasoning in Knowledge Bases
We present a surprisingly simple yet accurate approach to reasoning in knowledge graphs (KGs) that requires no training, and is reminiscent of case-based reasoning in classical artificial intelligence (AI). Consider the task of finding a target entity given a source entity and a binary relation. Our non-parametric approach derives crisp logical rules for each query by finding multiple graph path patterns that connect similar source entities through the given relation. Using our method, we obtain new state-of-the-art accuracy, outperforming all previous models, on NELL-995 and FB-122. We also demonstrate that our model is robust in low data settings, outperforming recently proposed meta-learning approaches
READ FULL TEXT