References
 [1] BenAkiva, M. (1973). The structure of travel demand models. PhD thesis, MIT.
 [2] BenAkiva, M., and Lerman, S. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press.
 [3] Bochner, S. (1937). “Completely monotone functions of the Laplace operator for torus and sphere.” Duke Math. J. vol. 3, pp. 488502.
 [4] Cardell, S. (1997). “Variance Components Structures for the ExtremeValue and Logistic Distributions withApplication to Models of Heterogeneity.” Econometric Theory 13(2), pp. 185–213.
 [5] Dishon, M. and Bendler, J. (1990). “Tables of the inverse Laplace transform of the function $ e^{s^beta} $.” Journal of Research of the National Institute of Standards and Technology 95, pp. 433–467.

[6]
Feller, W. (1971).
An Introduction to Probability Theory and its Applications
vol. 2, 2nd edition. Wiley.  [7] Humbert, P. (1945). “Nouvelles correspondances symboliques”. Bulletin de la Société Mathématique de France 69, pp. 121–129.
 [8] McFadden, D. (1978). “Modeling the choice of residential location”. In A. Karlquist et. al., editor, Spatial Interaction Theory and Residential Location. North Holland.
 [9] Pollard, H. (1946). “The representation of $ e^{x^lambda} $ as a Laplace integral”. Bulletin of the American Mathematical Society 52(10), pp. 908–910.
 [10] Ridout, M. S. (2009). “Generating random numbers from a distribution specified by its Laplace transform”. Statistics and Computing 19, pp 439–450.
 [11] Tiago de Oliveira, J. (1958). “Extremal Distributions”. Revista de Faculdada du Ciencia, Lisboa, Serie A, Vol. 7, pp. 215–227.
 [12] Tiago de Oliveira, J. (1997). Statistical analysis of the extreme. Pendor.