A Short Note on Improved ROSETA

10/16/2017
by   Hassan Mansour, et al.
0

This note presents a more efficient formulation of the robust online subspace estimation and tracking algorithm (ROSETA) that is capable of identifying and tracking a time-varying low dimensional subspace from incomplete measurements and in the presence of sparse outliers. The algorithm minimizes a robust l1 norm cost function between the observed measurements and their projection onto the estimated subspace. The projection coefficients and sparse outliers are computed using a LASSO solver and the subspace estimate is updated using a proximal point iteration with adaptive parameter selection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro