A sharp relative-error bound for the Helmholtz h-FEM at high frequency
For the h-finite-element method (h-FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80's. Nevertheless, there still do not exist in the literature any k-explicit bounds on the relative error of the FEM solution, apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree, p, equal one), the condition "h^2 k^3 sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of k) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for p≥ 2.
READ FULL TEXT