A Semiclassical Proof of Duality Between the Classical BSC and the Quantum PSC

by   Narayanan Rengaswamy, et al.

In 2018, Renes [IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 577-592 (2018)] (arXiv:1701.05583) developed a general theory of channel duality for classical-input quantum-output (CQ) channels. That result showed that a number of well-known duality results for linear codes on the binary erasure channel could be extended to general classical channels at the expense of using dual problems which are intrinsically quantum mechanical. One special case of this duality is a connection between coding for error correction (resp. wire-tap secrecy) on the quantum pure-state channel (PSC) and coding for wire-tap secrecy (resp. error correction) on the classical binary symmetric channel (BSC). While this result has important implications for classical coding, the machinery behind the general duality result is rather challenging for researchers without a strong background in quantum information theory. In this work, we leverage prior results for linear codes on PSCs to give an alternate derivation of the aforementioned special case by computing closed-form expressions for the performance metrics. The noted prior results include optimality of the square-root measurement (SRM) for linear codes on the PSC and the Fourier duality of linear codes. We also show that the SRM forms a suboptimal measurement for channel coding on the BSC (when interpreted as a CQ problem) and secret communications on the PSC. Our proofs only require linear algebra and basic group theory, though we use the quantum Dirac notation for convenience.


page 1

page 2

page 3

page 4


Duality between source coding with quantum side information and c-q channel coding

In this paper, we establish an interesting duality between two different...

Smoothing of binary codes, uniform distributions, and applications

The action of a noise operator on a code transforms it into a distributi...

On the Construction of New Toric Quantum Codes and Quantum Burst-Error Correcting Codes

A toric quantum error-correcting code construction procedure is presente...

Properties of Noncommutative Renyi and Augustin Information

The scaled Rényi information plays a significant role in evaluating the ...

Classical and Quantum Factors of Channels

Given a classical channel, a stochastic map from inputs to outputs, can ...

Belief Propagation with Quantum Messages for Symmetric Classical-Quantum Channels

Belief propagation (BP) is a classical algorithm that approximates the m...

Bosonic Dirty Paper Coding

The single-mode bosonic channel is addressed with classical interference...

Please sign up or login with your details

Forgot password? Click here to reset