DeepAI AI Chat
Log In Sign Up

A Semi-supervised Graph Attentive Network for Financial Fraud Detection

by   Daixin Wang, et al.

With the rapid growth of financial services, fraud detection has been a very important problem to guarantee a healthy environment for both users and providers. Conventional solutions for fraud detection mainly use some rule-based methods or distract some features manually to perform prediction. However, in financial services, users have rich interactions and they themselves always show multifaceted information. These data form a large multiview network, which is not fully exploited by conventional methods. Additionally, among the network, only very few of the users are labelled, which also poses a great challenge for only utilizing labeled data to achieve a satisfied performance on fraud detection. To address the problem, we expand the labeled data through their social relations to get the unlabeled data and propose a semi-supervised attentive graph neural network, namedSemiGNN to utilize the multi-view labeled and unlabeled data for fraud detection. Moreover, we propose a hierarchical attention mechanism to better correlate different neighbors and different views. Simultaneously, the attention mechanism can make the model interpretable and tell what are the important factors for the fraud and why the users are predicted as fraud. Experimentally, we conduct the prediction task on the users of Alipay, one of the largest third-party online and offline cashless payment platform serving more than 4 hundreds of million users in China. By utilizing the social relations and the user attributes, our method can achieve a better accuracy compared with the state-of-the-art methods on two tasks. Moreover, the interpretable results also give interesting intuitions regarding the tasks.


Semi-supervised Deep Representation Learning for Multi-View Problems

While neural networks for learning representation of multi-view data hav...

Graph Based Semi-supervised Learning with Convolution Neural Networks to Classify Crisis Related Tweets

During time-critical situations such as natural disasters, rapid classif...

FraudJudger: Real-World Data Oriented Fraud Detection on Digital Payment Platforms

Automated fraud behaviors detection on electronic payment platforms is a...

Heterogeneous Information Network based Default Analysis on Banking Micro and Small Enterprise Users

Risk assessment is a substantial problem for financial institutions that...

A New Semi-supervised Learning Benchmark for Classifying View and Diagnosing Aortic Stenosis from Echocardiograms

Semi-supervised image classification has shown substantial progress in l...

Interpretable Multimodal Learning for Intelligent Regulation in Online Payment Systems

With the explosive growth of transaction activities in online payment sy...