A Semi-Parametric Binning Approach to Quickest Change Detection

01/15/2018
by   Tze Siong Lau, et al.
0

The problem of quickest detection of a change in distribution is considered under the assumption that the pre-change distribution is known, and the post-change distribution is only known to belong to a family of distributions distinguishable from a discretized version of the pre-change distribution. A sequential change detection procedure is proposed that partitions the sample space into a finite number of bins, and monitors the number of samples falling into each of these bins to detect the change. A test statistic that approximates the generalized likelihood ratio test is developed. It is shown that the proposed test statistic can be efficiently computed using a recursive update scheme, and a procedure for choosing the number of bins in the scheme is provided. Various asymptotic properties of the test statistic are derived to offer insights into its performance trade-off between average detection delay and average run length to a false alarm. Testing on synthetic and real data demonstrates that our approach is comparable or better in performance to existing non-parametric change detection methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset