A semi-implicit hybrid finite volume / finite element scheme for all Mach number flows on staggered unstructured meshes

01/19/2023
by   Saray Busto, et al.
0

In this paper a new hybrid semi-implicit finite volume / finite element (FV/FE) scheme is presented for the numerical solution of the compressible Euler and Navier-Stokes equations at all Mach numbers on unstructured staggered meshes in two and three space dimensions. The chosen grid arrangement consists of a primal simplex mesh composed of triangles or tetrahedra, and an edge-based / face-based staggered dual mesh. The governing equations are discretized in conservation form. The nonlinear convective terms of the equations, as well as the viscous stress tensor and the heat flux, are discretized on the dual mesh at the aid of an explicit local ADER finite volume scheme, while the implicit pressure terms are discretized at the aid of a continuous ℙ^1 finite element method on the nodes of the primal mesh. In the zero Mach number limit, the new scheme automatically reduces to the hybrid FV/FE approach forwarded in <cit.> for the incompressible Navier-Stokes equations. As such, the method is asymptotically consistent with the incompressible limit of the governing equations and can therefore be applied to flows at all Mach numbers. Due to the chosen semi-implicit discretization, the CFL restriction on the time step is only based on the magnitude of the flow velocity and not on the sound speed, hence the method is computationally efficient at low Mach numbers. In the chosen discretization, the only unknown is the scalar pressure field at the new time step. Furthermore, the resulting pressure system is symmetric and positive definite and can therefore be very efficiently solved with a matrix-free conjugate gradient method. In order to assess the capabilities of the new scheme, we show computational results for a large set of benchmark problems that range from the quasi incompressible low Mach number regime to compressible flows with shock waves.

READ FULL TEXT

page 24

page 26

page 27

page 28

page 29

page 30

research
01/23/2023

An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations

We present a novel second-order semi-implicit hybrid finite volume / fin...
research
01/20/2023

A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all Froude numbers

We present a novel staggered semi-implicit hybrid FV/FE method for the n...
research
02/11/2023

An implicit staggered hybrid finite volume/finite element solver for the incompressible Navier-Stokes equations

We present a novel fully implicit hybrid finite volume/finite element me...
research
10/04/2022

A finite-volume scheme for modeling compressible magnetohydrodynamic flows at low Mach numbers in stellar interiors

Fully compressible magnetohydrodynamic (MHD) simulations are a fundament...
research
07/02/2021

Two-phase geothermal model with fracture network and multi-branch wells

This paper focuses on the numerical simulation of geothermal systems in ...
research
08/04/2022

Benchmarking the face-centred finite volume method for compressible laminar flows

Purpose: This study aims to assess the robustness and accuracy of the fa...

Please sign up or login with your details

Forgot password? Click here to reset