A semi-conjugate gradient method for solving unsymmetric positive definite linear systems

06/07/2022
by   Na Huang, et al.
0

The conjugate gradient (CG) method is a classic Krylov subspace method for solving symmetric positive definite linear systems. We introduce an analogous semi-conjugate gradient (SCG) method for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi process and converges in a finite number of steps. Because SCG's triangular system increases in size each iteration, we study a sliding window implementation (SWI) to improve efficiency, and show that the directions produced are still locally semi-conjugate. A counterexample illustrates that SWI is different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding window. Numerical experiments from the convection-diffusion equation and other applications show that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems efficiently.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset